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Chapter 4: Subgroups and Isomorphisms

Exercise 4.15

The following diagram shows Q8 with the generators i, j, and −1.

Figure 1: Q8

By following the arrows around the diagram we can see that i2 = −1, i3 =
−i, i4 = 1, and i5 = i. Simlarly, j2 = −1, j3 = −j, j4 = 1, and j5 = j. Also,
we have the following:

• (−1)2 = 1

• ij = k

• ji = −k

• k2 = −1

• ik = −j

The entire group can be generated by < i, j > or by < −i,−j >, or by
< i, k >, or by any such combination where one of the generators is ±p and the
other is ±q where p and q are different elements of {i, j, k}.

Let’s take a look at the subgroups of Q8. The smallest is the trivial subgroup
{1}. The next smallest is {1,−1} which has four clones (including itself). It
is generated by < −1 >. The subgroups {1,−1, i,−i} and {1,−1, j,−j} are
isomorphic to R4 and each have another clone on the opposite side of the dia-
gram. They are generated by < i > and < j > respectively (or by < −i > and
< −j >). The generating set < k > generates a similar subgroup {1,−1, k,−k}
which cannot be easily seen on the diagram.
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Exercise 4.16

The Cayley diagram of D3 contains two subgroups that are isomorphic to S2:
{e, s} and {e, s1}.

Figure 2: D3

Definition 4.17

Let G and G0 be two groups. We say that G and G0 are isomorphic if there exist
generating sets S and S0 for G and G0 , respectively, such that the corresponding
Cayley diagrams are identical where we ignore the labels on the vertices and
recolor the edges if necessary. In this case, we write G ∼= G0 . Otherwise,
we say that G and G0 are not isomorphic. If G and G0 are isomorphic, then
the one-to-one correspondence determined by matching up the corresponding
generators and respecting arrow paths is called an isomorphism.

Definition 4.18

If G is a group with n distinct actions, then we say that G has order n and
write |G| = n. If G contains infinitely many elements, then we say G has infinite
order and write |G| =∞.

Exercise 4.19

Here are the orders of some groups we’ve seen:

• |S2| = 2

• |Spin1×2| = 8

• |Spin3×3| = 9! ∗ 29

• |R4| = 4

• |D3| = 6
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• |D4| = 8

• |V4| = 4

• |Q8| = 8

Theorem 4.20

Suppose G and G0 are two groups of actions such that G ∼= G0 . Then |G| =
|G0|.

By Definition 4.17 we know that two groups that are isomorphic have a one-
to-one correspondence between the vertices and generator arrows. This entails
that there be the same number of vertices in each group, and therefore we know
that the order of the two groups is the same.

Problem 4.21

(a) R4 (b) V4

The two groups shown above, R4 and V4, are not isomorphic because of the
behavior of the generating actions. The action r cannot be mapped to either v
or h because v and h are their own inverses and r is not.
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Problem 4.22

(a) R6 (b) D3

These two groups are not isomorphic either. The action r in R6 requires
a minimum of 6 applications to get back to the identity action. None of the
actions in D3 have this property so there is no one to one mapping.

Exercise 4.23

Figure 5: L4
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Problem 4.24

The groups L2 and V4 are isomorphic! Here is the mapping:

Figure 6: L2 → V4

Problem 4.25

(a) D4 (b) Q8

The groups D4 and Q8 are not isomorphic. In Q8 there are two subgroups
containing e that are each isomorphic to R4, whereas in D4 there is only one.
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Problem 4.26

(a) D4 (b) Spin1×2

The groups D4 and Spin1×2 are not isomorphic. The action r in D4 must
be applied a minimum of four times to return to e, but in Spin1×2 there is no
such action.

Exercise 4.27

Figure 9: S3
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Problem 4.28

(a) S3 (b) D3

The group S3 is isomorphic with D3 under the generators s and s1. Here is
the mapping:

Figure 11: D3 → S3
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Chapter 5: Formal Groups

Definition 5.1

A binary operation ∗ on a set A is a function from A × A into A. For each
(a, b) ∈ A×A, we denote the element ∗(a, b) via a ∗ b.

Exercise 5.8

Composition of spins is not a binary operation on the set of allowable spins in
Spin3×3 because the net effect of some sequences of spins cannot be reproduced
by a single allowable spin. However, composition would be a binary operation
on the group of all actions in Spin3×3.

Exercise 5.9

Neither matrix addition nor matrix multiplication on M(R) are binary opera-
tions because not all pairs of elements of M(R) are in their domains. However,
this problem is circumvented for both operations if we restrict to square matrices
of a fixed size n× n.

Exercise 5.10

Both ∪ and ∩ are binary operations on P(Z). Taking either the union or the
intersection of any two sets of integers will yeild a single set of integers. In other
words, ∪ and ∩ are both closed and well defined on P(Z).

Exercise 5.11

Consider the closed interval [0, 1] and define ∗ on [0, 1] via a ∗ b =min{a, b}. All
pairs of numbers within the interval [a, b] are in the domain of the minimum
function, which is to say that any pair of numbers has a minimum value. The
output will always be a single value; there are never two minimum values in a
pair of numbers. Therefore, ∗ is a binary operation.

Definition 5.12

Let A be a set and let ∗ be a binary operation on A.

(a) We say that ∗ is associative if and only if (a ∗ b) ∗ c = a ∗ (b ∗ c) for all
a, b, c ∈ A.

(b) We say that ∗ is commutative if and only if a ∗ b = b ∗ a for all a, b ∈ A.

Exercise 5.13

Multiplication on the real numbers is commutative, but matrix multiplication
on the set of real number matrices is not.

9



Theorem 5.14

Let A be a set and let F be the set of functions from A to A. Then function
composition is an associative binary operation on F .

Exercise 5.16

A table showing the outputs of a binary operation must have reflective symmetry
across the middle diagonal of cells (the diagonal that represents each input
combined with itself).

a2 a ∗ b a ∗ c
b ∗ a b2 b ∗ c
c ∗ a c ∗ b c2

Exercise 5.17

∗ a b c d
a a b c d
b b a c d
c c d c d
d d c c d

Definition 5.18

A group (G, ∗) is a set G together with a binary operation ∗ such that the
following axioms hold.

0. The set G is closed under ∗.

1. The operation ∗ is associative.

2. There is an element e ∈ G such that for all g ∈ G, e ∗ g = g ∗ e = g. We
call e the identity.

3. Corresponding to each g ∈ G, there is an element g′ ∈ G such that
g ∗ g′ = g′ ∗ g = e. In this case, g′ is called the inverse of g, which we
shall denote as g−1.

Exercise 5.20

Explain why axiom 0 is unnecessary.

It is not necessary to specify that G is closed under ∗ because by definition
binary operations have the property of closure.
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Exercise 5.21

Let us see how our intuitive definition of a group matches up with our new formal
definition. Here is the list of four rules that made up our intuitive definition:

Rule 1: There is a predefined list of actions that never changes.

Rule 2: Every action is reversible.

Rule 3: Every action is deterministic.

Rule 4: Any sequence of consecutive actions is also an action.

It is easy to see that Rule 2 matches up with the third axiom that requires
that each element have an inverse. The second axiom requiring an identity
element is a prerequisite for the third axiom, so both these axioms are expressed
by Rule 2. Rule 4 is equivalent to saying that the operation is closed which
is expressly clarified in axiom 0. The fact that a binary operation is a function
guarantees that the operation is well defined, which is Rule 3. The associative
property guaranteed by the first axiom ensures that function composition is
also deterministic. Rule 1 is covered in the definition of a group as being a
binary operation and a set, meaning that there is a predefined domain for the
operation and that every element of the set is always in the domain for the
binary operation.

Exercise 5.22

All of the groups we have considered so far can be verified to satisfy the for-
mal axioms if we can say definitively that all correctly drawn Cayley diagrams
guarantee adherence to the axioms.

Associativity is ensured in that following one arrow, followed by the group
of two others is always identical to following the first two arrows and then the
third.

We can see that a Cayley diagram is closed and well defined by noting that
all vertices can be reached by following a sequence of arrows, that vertices have
an arrow of each color leaving and arriving, and that no arrows head off into
nothingness, but always arrive at another vertex.

Making sure that e is included in the diagram and that paths exist from
every vertex to e ensures that the group has an identity and that all of the
actions have inverses.

Since we have constructed Cayley diagrams with these properties for all the
groups we’ve considered so far, we can be sure they adhere to our new formal
axioms.

Exercise 5.23

Let take a tour of some common sets on binary operations and see if they are
groups by our formal definition:
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• (Z,+) is a group. The identity element is 0 and the inverse of an integer
n is −n. All integers are in the domain of the addition operation, and the
result of adding any two integers is another integer. This group is abelian.

• (N,+) is not a group because without negative numbers included in our
group, there are no inverses. This group is abelian.

• (Z, ·) is not a group because multiplicative inverses are non-integer ratio-
nals.

• (R,+) is a group. The identity element is 0 and the inverse of a real
number r is −r. All real numbers are in the domain of addition and the
result of adding any two real numbers is another real number. This group
is abelian.

• (R, ·) is not a group because 0 has no multiplicative inverse.

• (R \ {0}, ·) is a group. The multiplicative inverse of a real number is its
reciprocal and without 0 in the mix that covers everybody. The identity
element is 1. All non-zero real numbers are in the domain of multiplication
and the result of multiplying any two real numbers is another real number.
This group is abelian.

• (M2×2(R),+) is a group. The identity element is the 2 × 2 matrix with
0 in all the cells and the inverse of a matrix m is −1m. This group is
abelian.

• (M2×2(R), ∗) where ∗ is matrix multiplication is a group. All pairs of two
by two matrices can be combined with matrix multiplcation to produce
another two by two matrix. The identity element is the identity matrix
and the inverse of a matrix is its inverse matrix! This group is not abelian
because matrix multiplication is not commutative.

• ({a, b, c}, ∗) where ∗ is defined by the following table from Exercise 5.15 is
not a group because there is no consistent identity element.

* a b c
a b c b
b a c b
c c b a

12



• ({a, b, c, d}, ∗) where ∗ is defined by the following table from Exercise 5.17
is also not a group because while a appears to be an identity element, c
and d have no inverse.

∗ a b c d
a a b c d
b b a c d
c c d c d
d d c c d

Theorem 5.24

Let G be a group with binary operation ∗. Then there is a unique identity
element in G. That is, there is only one element e in G such that g∗e = e∗g = g
for all g ∈ G.

Theorem 5.25 (Cancellation Law)

Let (G, ∗) be a group and let g, x, y ∈ G. Then g ∗x = g ∗ y if and only if x = y.
Similarly, x ∗ g = y ∗ g if and only if x = y.

Suppose that g ∗ x = g ∗ y.
Then, g−1 ∗ (g ∗ x) = g−1 ∗ (g ∗ y) because ∗ is deterministic.
Therefore, (g−1 ∗ g) ∗ x = (g−1 ∗ g) ∗ y because ∗ is associative.
Finally, e ∗ x = e ∗ y and so x = y.

Exercise 5.26

To see that (R, ·) fails the Cancellation Law consider that 5 · 0 = π · 0 = 0. By
the Cancellation Law, 5 should then be equal to π. Since this is not the case,
the Cancellation Law does not hold.

Corollary 5.27

Let G be a group with binary operation ∗. Then each g ∈ G has a unique
inverse.

Suppose that a and b are both inverses of g. Then, g ∗ a = g ∗ b = e.
Therefore, by the Cancellation Law, a = b.

Theorem 5.28

Let G be a group and let g, h ∈ G. Then the equations g ∗ x = h and y ∗ g = h
have unique solutions for x, y ∈ G.

Suppose that both x1 and x2 are solutions to the equation g ∗ x = h. Then,
g ∗ x1 = g ∗ x2 = h, and so by the Cancellation Law x1 = x2. We also know
that such a solution exists because x, g and h are all members of the group, so
there must be some element x that results in h when applied to g.

A symmetric argument shows the same for y.
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Theorem 5.29

Let G be a group with binary operation ∗. If g ∗ h = e, then h ∗ g = e.
If g ∗ h = e, then h and g are inverses. By definition, g ∗ g−1 = g−1 ∗ g = e.

So, h ∗ g = g ∗ h = e.

Theorem 5.30

Let G be a group and let g ∈ G. Then (g−1)−1 = g.
For any element g ∈ G, we have that g−1 ∗ g = e.
So, (g−1)−1 ∗ g−1 = e.
Since g ∗ g−1 = e as well, we know that (g−1)−1 and g are identical.

Definition 5.31

Let (G, ∗) be a group and let g ∈ G. Then for n ∈ N we define

gn = g ∗ g ∗ · · · ∗ g︸ ︷︷ ︸
n factors

and

g−n = g−1 ∗ g−1 ∗ · · · ∗ g−1︸ ︷︷ ︸
n factors

Moreover, we define g0 = e.

Theorem 5.32

Let (G, ∗) be a group and let g ∈ G. For n,m ∈ Z, we have the following:

(a) gn ∗ gm = g ∗ g ∗ · · · ∗ g︸ ︷︷ ︸
n factors

∗ g ∗ g ∗ · · · ∗ g︸ ︷︷ ︸
m factors

Therefore, gn ∗ gm = gn+m

(b) By definition, gn ∗ (gn)−1 = e.
Also, by part (a), gn ∗ g−n = gn+(−n) = g0 = e.
So, gn ∗ (gn)−1 = gn ∗ g−n = e.
And therefore, (gn)−1 = g−n.

Exercise 5.33

The table has symmetry across the diagonal from the upper left to the lower
right. This reveals that V4 is abelian.

∗ e v h vh
e e v h vh
v v e vh h
h h vh e v
vh vh h v e
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Exercise 5.34

Table 1: S2

∗ e s
e e s
s s e

Table 2: R3

∗ e r r2

e e r r2

r r r2 e
r2 r2 e r

Table 3: R4

∗ e r r2 r3

e e r r2 r3

r r r2 r3 e
r2 r2 r3 e r
r3 r3 e r r2

Table 4: D3

∗ e r r2 s rs sr
e e r r2 s rs sr
r r r2 e rs sr s
r2 r2 e r sr s rs
s s sr rs e r2 r
rs rs s sr r e r2

sr sr rs s r2 r e

Table 5: S3

∗ e s1 s2s1 s1s2s1 s1s2 s2
e e s1 s2s1 s1s2s1 s1s2 s2
s1 s1 e s1s2s1 s2s1 s2 s1s2
s2s1 s2s1 s2 s1s2 s1 e s1s2s1
s1s2s1 s1s2s1 s1s2 s2 e s1 s2s1
s1s2 s1s2 s1s2s1 e s2 s2s1 s1
s2 s2 s2s1 s1 s1s2 s1s2s1 e
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Table 6: D4

∗ e r r2 r3 h rh r2h hr
e e r r2 r3 h rh r2h hr
r r r2 r3 e rh r2h hr h
r2 r2 r3 e r r2h hr h rh
r3 r3 e r r2 hr h rh r2h
h h hr r2h rh e r3 r2 r
rh rh h hr r2h r e r3 r2

r2h r2h rh h hr r2 r e r3

hr hr r2h rh h r3 r2 r e

Table 7: Q8

∗ 1 −1 i −i j −j k −k
1 1 −1 i −i j −j k −k
−1 −1 1 −i i −j j −k k
i i −i −1 1 k −k −j j
−i −i i 1 −1 −k k j −j
j j −j −k k −1 1 i −i
−j −j j k −k 1 −1 −i i
k k −k j −j −i i −1 1
−k −k k −j j i −i 1 −1

Of the groups shown, only S2, R3 and R4 are abelian.

Theorem 5.35

Let (G, ∗) be a finite group. Then each element in G appears exactly once in
each row and each column, respectively, in any group table for G.

Proof. Suppose that an element g appeared twice in a single column. That
would mean that both x ∗ y1 = g and x ∗ y2 = g for any y1, y2 ∈ G where
y1 6= y2. But then,

x−1 ∗ x ∗ y1 = x−1 ∗ g
y1 = x−1 ∗ g

and

x−1 ∗ x ∗ y2 = x−1 ∗ g
y2 = x−1 ∗ g

By the definition of a group we know that x−1 ∈ G and therefore Theorem 5.28
guarantees that x−1 ∗ g must have a unique solution. So, y1 = y2 and g does
not appear twice in the same column after all.
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A symmetric argument can be made showing that g cannot appear twice in
the same row either.

Now, a group table for G contains a column and a row for each element, and
therefore has the same number of columns and rows as the number of elements
in G. Each cell in a row or column must be occupied by an element of the group.
But, since an element cannot appear twice in a row or column, each element
must appear exactly once in every row and column.

Exercise 5.36

The discussion in the book shows that there is a way to draw the group tables
for V4 and the group A such that the product of corresponding elements yields
the corresponding result. We could, in other words, replace all the vertices in a
Cayley diagram for V4 with the corresponding elements from A. We have already
seen that when you follow sequences of arrows around a Cayley diagram the way
you group the sequences doesn’t change where you end up. So, associativity is
present for V4 and for any group that can be shown to have an equivalent
structure in this way.

Exercise 5.37

Figure 12: A ∼= V4

There is a one to one mapping between each arrow and each vertex in A to
a corresponding arrow or vertex in V4, so the two are isomorphic.

Exercise 5.38

∗ e r r2 r3

e e r r2 r3

r r r2 r3 e
r2 r2 r3 e r
r3 r3 e r r2

Table 8: R4

∗ e v h vh
e e v h vh
v v e vh h
h h vh e v
vh vh h v e

Table 9: V4

It is not possible to color these two tables so that they match. They are not
isomorphic. There are many ways to see this, but one is to consider that none
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of the elements in R4 are their own inverses, but all of the elements in V4 are
their own inverses.

Problem 5.39

Let (G, ∗) and (G′, ◦) be two finite groups. If we can arrange the rows and
columns and color the elements in such a way that the colorings for the two
group tables agree, that means that the sequences of actions you must take to
move between the elements of the groups are identical and so the two groups
are isomorphic. If the group tables map in this way, it is equivalent to the
Cayley diagrams having a one-to-one mapping, and so either comparison is a
valid method of establishing isomorphism.

Problem 5.40

Suppose we have a table for (G, ∗), where G is finite. If we know that there is
an identity element, and that every element appears exactly once in each row
and in each column, we have almost all we need to establish that G is a group.
We know that ∗ is a binary operation because the table shows an output for
any combination of two inputs and all of those outputs are elements of G. Also,
we know that every element of G has an inverse because the identity element
appears in every row and column and so there is a ”path” from every element to
the identity. The only remaining property of a group to establish is associativity.

Problem 5.41

If you try to create a group table with two identities the cell where the two
identities combine must meet two conflicting requirements. An identity element
does not change any element it combines with, but it cannot help but do so
in the case of two different identities combining. Let us say the first identity
is e and the second is e1. The cell where they combine would have to be e1
because otherwise e would be changing e1 when applied to it. But the reverse
is also true. The cell must be e because otherwise e1 would be changing e when
combined with it and would not be an identity element. Thus, it is impossible
to create a consistent group table with two identity elements.

Problem 5.42

All groups with a single element are isomorphic because there is only one way
for such a group to be. The element is an identity and it is its own inverse and
there is no other structure that a single element group could take on.
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Problem 5.43

∗ e a
e e a
a a e

The table above shows the only possible group table for a group of order two.
The cells in the e column and the e row are determined by e being the identity.
There is only one remaining cell which must be filled in by e for at least two
reasons. First, e needs to appear in row two and column two. Secondly, a needs
an inverse. The identity cannot be the inverse of a and so a must be its own
inverse.

This is the group table for S2 and so all groups of order two are isomorphic
to it.

Problem 5.44

For a group of order three, there are only two possible ways to fill in the identity
element in the table. Either a and b are their own inverses, or they are the
inverses of each other. If they are their own inverses, we have the following
situation:

∗ e a b
e e a b
a a e
b b e

There is no way to consistently fill in the third element of the second row,
since filling it in with b would result in b appearing twice in that column. A
symmetric conflict arises for the second cell in the third row.

So, a and b must be the inverses of each other and we have the following
table, which is the table for R3.

∗ e a b
e e a b
a a b e
b b e a

All groups of order three must therefore be isomorphic to R3.
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Problem 5.45

Here are the two possible ways to fill out group tables of order 4:

∗ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

∗ e a b c
e e a b c
a a b c e
b b c e a
c c e a b

The one on the left is isomorphic to V4. Notice that all the actions in the
group are their own inverses. The table on the right is isomorphic with R4 with
b mapping on to r2 and a and c being inverses of each other just like r and r3.

Since these are the only two possibilities, all groups of order 4 are isomorphic
to either D4 or R4.

Exercise 5.46

Does the following diagram satisfy all the rules of our informal definition of a
group? It depends on what is meant by Rule 1: There is a basic set of actions
that never changes. The diagram in figure 5.1 satisfies the restriction that all
vertices have an arrow of each color leaving and arriving, but sometimes the
action represented by the red arrow is its own inverse and sometimes it is not.
A strict interpretation of what it means for an action to change would disqualify
this diagram.

Figure 5.1

Trying to convert the diagram to a group table reveals a problem that dis-
qualifies it as a group. Starting from c, taking the red arrow action results in
f . But, you can also arrive at f from c by following blue, then red, then blue.
Regardless of how you choose the identity, some action in the group will corre-
spond to this blue-red-blue path. So, we can get from c to f either by taking
the action corresponding to the red arrow, or by the action corresponding to
blue-red-blue. This causes f to appear twice in the c column.

20



Exercise 5.47

Figure 5.2

This time the red and blue arrow generators are at least consistently single
or double arrows. But the assymetry between the left and right hand side of
the diagram is suspicious.

It turns out that there are problems that arise if you try to make this diagram
into a group table. One way of seeing the problems is to notice that some
combinations of the generators do not have a consistent inverse. Starting from
a, an inverse of blue-red-red is blue-red. But, if you start from d and following
blue-red-red and then blue-red, you wind up at b instead of back at d like you
would be if the inverse relation still held.

In the group table, this means that the path of generators you pick to stand
in for an action sometimes makes a difference and only one of the paths will
create a consistent table. For a diagram to truly be a group, it shouldn’t matter
how you name an action in terms of the generators, it will always come out the
same.
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Exercise 5.48

Figure 13: D3

Here are some relations that hold throughout the diagram:

• srsr = e

• sr−1sr = r2

Exercise 5.49

In Figure 5.1, blue-red-blue sometimes equals red, but sometimes equals back-
wards red. We already saw how Figure 5.2 was not regular in Exercise 5.47.

Problem 5.50

There are many ways to think about why a Cayley diagram for a group must
be regular. The basic idea is that actions, and therefore sequences of actions
must always do the “same thing”. One way to link this to the formal definition
is to consider that if a relation does not hold throughout the group, an action
will not always have a consistent inverse.

Problem 5.51

Suppose (G, ∗) is a group and S is a generating set for G. If G is abelian and
a, b ∈ S, then any sequence of n arrows representing a and m arrows representing
b must be equivalent, regardless of the order of the arrows.

The converse of this statement is also true. This ability to arrange the arrows
in any order is essentially what it means to be commutative or abelian.

Definition 5.52

Let (G, ∗) be a group and let H be a subset of G. Then H is a subgroup of G,
written H ≤ G, provided that H is a group in its own right under the binary
operation inherited from G.
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Theorem 5.53

Suppose (G, ∗) is a group and H is a nonempty subset of G. Then H ≤ G if
and only if (i) for all h ∈ H, h−1 ∈ H as well, and (ii) H is closed under the
binary operation of G.

Proof. First, let us recall the definition of a group.
Definition 5.18 A group (G, ∗) is a set G together with a binary operation

∗ such that the following axioms hold.

0. The set G is closed under ∗.

1. The operation ∗ is associative.

2. There is an element e ∈ G such that for all g ∈ G, e ∗ g = g ∗ e = g. We
call e the identity.

3. Corresponding to each g ∈ G, there is an element g′ ∈ G such that
g ∗ g′ = g′ ∗ g = e. In this case, g′ is called the inverse of g, which we
shall denote as g−1.

It is clear that if either conditions (i) or (ii) do not hold then H cannot be
a group in its own right. We need to show that they are sufficient, given that
H is defined to be a subset of G.

We can check the axioms one by one. Axiom 0 is guaranteed directly by
part (ii). Axiom 1 holds because we already know ∗ is associative from the
knowledge that G is a group. Axiom 3 is guaranteed by (i) directly.

All that is left to show is that there is an identity element in H. If part
(i) holds, then there is an inverse for every member of the group. Combining a
given element h with it’s inverse h−1 results in e. And if (ii) holds, then closure
implies that e must then be in the set as well. And so axiom 2 is satisfied.

Exercise 5.55

Consider (R3,+), where R3 is the set of all 3-entry row vectors with real number
entries and + is ordinary vector addition.

Let H be the subset of R3 consisting of vectors with first coordinate 0. H is
a subgroup of R3.

Proof. By Theorem 5.53, we need only show that every element in H has an
inverse and that it is closed over vector addition.

For all y, z ∈ R the inverse of an element (0, y, z) is (0,−y,−z), which has a
first coordinate of 0 and so is an element of H.

Also, for any a, b, c, d ∈ R adding (0, a, b) + (0, c, d) results in a new vector
(0, a + c, b + d) which still has a first coordinate of 0 and so is an element of
H.
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Let K be the subset of R3 consisting of vectors whose entries sum to 0. K
is also a subgroup of R3.

Proof. Again we need to show that every element in K has an inverse that is
also in K and that K is closed under vector addition.

Let M be the vector (x, y, z) for any x, y, z ∈ R3 where x + y + z = 0.
Then M ∈ K and the inverse of M is (−x,−y,−z). Now, −x+ (−y) + (−z) =
−(x+ y + z) = −(0) = 0, so M−1 is also an element of K.

Let N be a second vector in K with coordinates (a, b, c). Then M + N =
(x + a, y + b, z + c) and so the sum of the coordinates of this new vector is
(x+ a) + (y + b) + (z + c) = (x+ y + z) + (a+ b+ c) = 0 + 0 = 0. So, the new
vector is also a member of K, and K is closed under vector addition.

Let L be the subset of R3 consisting of vectors whose entries sum to 1. L is
not a subgroup of R3. To see why, consider that the inverse of an element of L
will have coordinates that sum to −1 and so will not be a member of L.

Exercise 5.56

The even integers are a subgroup of the integers under addition because for any
n ∈ Z, the inverse of 2n is −2n and adding any two even integers results in
another even integer.

However, adding two odd integers results in an even integer, so the odd
integers are not a subgroup of the integers under addition. (They are, however,
a clone of the even integer subgroup!)

The proof for nZ is the same as for 2n.
There are no other subgroups of Z The simplest generating set is 1,−1. For

2n you take two of each of these at once for a generating set of 2,−2. This has
the effect of stretching out the number line but preserving the symmetry and
structure of the group. If there were another subgroup we would need a smaller
or alternate generating set with which to generate the subgroup.

Exercise 5.57

In D8 the subset consisting of rotations by 0◦, 90◦, 180◦ and 270◦ is a subgroup.
The 90◦ and 270◦ rotations are inverses of each other and 180◦ is its own inverse.
They are all multiples of 90◦. Combining any two results in another multiple of
90◦.

Exercise 5.58

The definition of a subgroup requires that the subgroup be a group under the
same binary operation of the original group. We can see that (R \ 0, ·) is not a
subgroup of (R,+) by noting that it lacks the identity and so is not a group in
its own right under addition.
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Theorem 5.59

Suppose (G, ∗) is a group and let H,K ≤ G. Then, H ∩K ≤ G.

Proof. Any element that is in both H and K will have an inverse in both H
and K as well. Therefore, if an element is in H ∩K its inverse will be as well.
We can conclude from this that all elements in H ∩K have an inverse in H ∩K.

Let g, h ∈ H ∩K. Since both H and K are closed under ∗, any combination
of h and g is contained in both H and K and so will also be in the intersection.
Therefore,H ∩K is closed under ∗.

By Theorem 5.53, these two conditions are sufficient for showing that H ∩K
is a group.

Problem 5.60

We cannot replace intersection with union in the previous theorem. To see a
counterexample, consider V4 = {e, v, h, vh} and two of its subgroups < v > and
< h >. The union of these two subgroups is {e, v, h} which lacks the element
vh. The union, therefore, is not closed and so is not a group in its own right.

Theorem 5.61

Suppose (G, ∗) is an abelian group and let H ≤ G. Then H is an abelian
subgroup.

Proof. Let g, h ∈ H. By definition, G is abelian if and only if a∗ b = b∗a for all
a, b ∈ G. Since H is a subgroup of G we know that g, h ∈ G. So we have that
g ∗ h = h ∗ g. Therefore, H is abelian.

Problem 5.62

The converse of the previous theorem is not true. Consider the counter-example
D3. The group R3 is a subgroup of D3. R3 is abelian, but D3 is not.

Theorem 5.63

Suppose (G, ∗) is a group. Define

Z(G) := {z ∈ G|zg = gz for all g ∈ G}

(called the center of G). Then Z(G) is an abelian subgroup of G.

Proof.
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Exercise 5.64

• Z(S2) = S2

• Z(V4) = V4

• Z(S3) = {e}

• Z(D3) = {e}

• Z(D4) = {e, r2}

• Z(R4) = R4

• Z(R6) = R6

• Z(Spin1×2) = {e, t1t2}

• Z(Q8) = {1,−1}

• Z((Z,+)) = (Z,+)

• Z((R \ 0, ·)) = (R \ 0, ·)

Definition 5.65

Let (G, ∗) be a group and let S be a nonempty subset of G. Then we define
〈S〉 to be the set consisting of all possible (finite) products of elements from S
and their inverses. The set 〈S〉 is called the subgroup generated by S. The
elements of S are called generators of 〈S〉.

Theorem 5.66

Let (G, ∗) be a group and let S ⊆ G, where S 6= ∅. Then 〈S〉 ≤ G. In particular,
〈S〉 is the smallest subgroup of G containing S.

Proof. We need to show that 〈S〉 is a group in its own right, and that no smaller
subgroups containing S exist.

By Definition 5.65, all possible products of elements from S are contained
in 〈S〉, so 〈S〉 is closed. Also by that definition, the inverses of these products
are in S. We have therefore satisfied both conditions required by Theorem 5.53,
and so 〈S〉 is a group in its own right.

Since S is a subset of G and a group in its own right, S is a subgroup of G.
Now we turn to whether 〈S〉 is the smallest subgroup of G containing S. Let

H ≤ G such that every element of S is contained in H and H is smaller than
〈S〉. Then there exists at least one element g such that g ∈ {〈S〉 \ H}. Since
H is defined to contain all the original elements of S, g must not be an element
of S. The only other elements in 〈S〉 are possible products of the elements in
S, so g must be one of these possible products. But g is not contained in H, so
H is lacking one of the possible products of the elements of S. Therefore, H is
not closed under ∗. Thus, H cannot exist and 〈S〉 is the smallest subgroup of
G containing S.
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Exercise 5.67

The only two generating sets for nZ seem to be 〈n〉 = nZ or 〈−n〉 = nZ. Larger
multiples of n won’t generate n itself.

Theorem 5.68

Let G be a group and let g1, g2, . . . , gn ∈ G. If x ∈ 〈g1, g2, . . . , gn〉. Then
〈g1, g2, . . . , gn〉 = 〈g1, g2, . . . , gn, x〉.

Proof. Since x ∈ 〈g1, g2, . . . , gn〉, we know that x = gi ∗ gj for some gi, gj ∈
{g1, g2, . . . , gn}. So, for all g ∈ {g1, g2, . . . , gn}, x ∗ g = (gi ∗ gj) ∗ g. But
(gi ∗ gj) ∗ g is one possible product of the elements in {g1, g2, . . . , gn} and so is
already contained in 〈g1, g2, . . . , gn〉. Thus, all elements in 〈g1, g2, . . . , gn, x〉 are
also in 〈g1, g2, . . . , gn〉 and therefore 〈g1, g2, . . . , gn〉 = 〈g1, g2, . . . , gn, x〉.

Exercise 5.69

The only subgroups of R5 are R5 itself and {e}.

Exercise 5.70

The subgroups of R6 are R6 itself, {e, r2, r4}, {e, r3} and {e}.
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Exercise 5.71

There are four non-trivial subgroups of D3: 〈r〉 = {e, r, r2}, {e, s}, {e, sr},
{e, sr2}.

Exercise 5.72

There are four non-trivial subgroups of S3: 〈s1s2〉 = {e, s1s2, (s1s2)2}, {e, s1},
{e, s2}, {e, s1s2s1}.

Hey, look! It’s isomorphic to D3! Drawing the subgroup lattice makes the
isomorphism apparent even if different generators are used.

Exercise 5.73

There are six non-trivial subgroups of D4: 〈r〉 = {e, r, r2, r3}, {e, r2}, {e, h},
{e, rh}, {e, r2h}, {e, r3h}.
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Exercise 5.74

Problem 5.75

If two groups are isomorophic, their subgroup lattices will have the same struc-
ture. It follows that if the subgroup lattices of two groups look nothing alike,
they cannot be isomorphic. On the other hand, if two groups are not isomorphic
we don’t know how their subgroup lattices will compare. They might be similar
and simply have different kind of subgroups.

Problem 5.76

To generate a Cayley diagram that reveals a particular subgroup, construct the
diagram by using the generators of that subgroup as generators for the diagram.

Problem 5.77

To construct a group table that reveals a subgroup, generate the columns by
applying the generator of the subgroup repeatedly so that the first series of
columns are all headed by members of that subgroup. Every time you add a
new column after that, make sure to apply the same generator to create the
head of the next column. In this way, the subgroup will be visible in the upper
left hand corner of the group table and clones will show up in adjacent blocks
of the table.

Section 5.6

Exercise 5.78

The groups R4 and V4 both have an order of 4, but they are not isomorphic.
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Definition 5.79

Let (G1, ∗) and (G2, ◦) be two groups. Then G1 is isomorphic to G2, written
G1
∼= G2, if and only if there exists a one-to-one and onto function φ : G1 → G2

such that

φ(x ∗ y) = φ(x) ◦ φ(y) (1)

The function φ is referred to as an isomorphism. Equation (1) is often
referred to as the homomorphic property.

Problem 5.80

For the groups (R,+) and (R+, ·) define φ : R → R+ to be φ(r) = er for all
r ∈ R. Then φ is an isomorphism.

Proof. Note that, by the properties of exponents, e(x+y) = ex ·ey for all x, y ∈ R.
Rewriting in terms of φ we have φ(x + y) = φ(x) · φ(y). This matches the
condition in Definition 5.79 and so φ is an isomorphism.

Exercise 5.81

(a) No, φ(n) = n+ 1 is not an isomorphism from Z to Z under addition.
φ(x+ y) = φ(x) + φ(y)− 1.

(b) However, φ(n) = −n is an isomorphism under the conditions in (a)
because −(x+ y) = −x+ (−y).

(c) Yes, φ(x) = x/2 is an isomorhpism from Q to Q under addition because
x+y
2 = x

2 + y
2 .

Problem 5.82

The groups (Z,+) and (2Z,+) are isomorphic.

Proof. Define φ : Z→ 2Z to be φ(n) = 2n. For all x, y ∈ Z, 2(x+ y) = 2x+ 2y
and so φ(x + y) = φ(x) + φ(y). Therefore φ is an isomorphism for the two
groups, showing that they are isomorphic.
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Theorem 5.83

Suppose φ : G1 → G2 is an isomorphism from the group (G1, ∗) to the group
(G2, ◦). If e and e′ are the identity elements of G1 and G2 respectively, then
φ(e) = e′.

Proof. Since φ is an isomorphism, we have that φ(x ∗ y) = φ(x) ◦ φ(y) for any
x, y ∈ G1. So, φ(x ∗ e) = φ(x) ◦ φ(e). And since x ∗ e = x, φ(x) = φ(x) ◦ φ(e).
But the only element in a group that gives back the same element it is combined
with is the identity element. And so we see that φ(e) must be e′ the identity
element for G2.

Theorem 5.84

Suppose φ : G1 → G2 is an isomorphism from the group (G1, ∗) to the group
(G2, ◦). Then φ(g−1) = [φ(g)]−1.

Proof. By definition, we know that φ(g ∗ g−1) = φ(g) ◦ φ(g−1). The left side is
equivalent to φ(e), which by the previous theorem is just the identity element
for G2, or e′. So we see that φ(g−1) is the element that combines with φ(g) to
get the identity. That is, φ(g−1) is the inverse of φ(g), or φ(g−1) = [φ(g)]−1.

Theorem 5.85

Suppose φ : G1 → G2 is an isomorphism from the group (G1, ∗) to the group
(G2, ◦). If G1 is abelian then G2 is abelian.

Proof. By definition we know both that φ(x ∗ y) = φ(x) ◦ φ(y) and φ(y ∗ x) =
φ(y) ◦ φ(x). Since G1 is abelian, x ∗ y = y ∗ x and so the two lefthand sides
of the above equations are equal. That is, φ(x ∗ y) = φ(y ∗ x). Therefore the
two righthand sides of the equations are equal so that φ(x) ◦ φ(y) = φ(y) ◦ φ(x)
which means that G2 is abelian.
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Theorem 5.86

Suppose φ : G1 → G2 is an isomorphism from the group (G1, ∗) to the group
(G2, ◦). Then the function φ−1 : G2 → G1 is an isomorphism.

Proof. Let φ−1 : G2 → G1 be the inverse function of φ so that φ−1(φ(g)) = g
for any g ∈ G1 and φ(φ−1(g′)) = g′ for any g′ ∈ G2. We can be sure such an
inverse function exists because φ is one to one.

By the definition of an isomorphism, we know that φ(x ∗ y) = φ(x) ◦ φ(y).
Applying φ−1 to both sides of the equation, we have φ−1(φ(x∗y)) = φ−1(φ(x)◦
φ(y)).

The right side of the equation is equivalent to x∗y, which is in turn equivalent
to φ−1(φ(x)) ∗ φ−1(φ(y)). So we have

φ−1(φ(x)) ∗ φ−1(φ(y)) = φ−1(φ(x) ◦ φ(y)) (2)

Equation (2) satisfies Definition 5.79 and so the function φ−1 : G2 → G1 is
an isomorphism.

Theorem 5.87

Suppose φ : G1 → G2 and ψ : G2 → G3 are isomorphisms from the groups
(G1, ∗) to (G2,�) and (G2,�) to (G3, ?), respectively. Then the composite
function ψ ◦ φ is an isomorphism of G1 and G3.

Proof. By the definition of an isomorphism we know that φ(a ∗ b) = φ(a)�φ(b)
and ψ(g � h) = ψ(g) ? ψ(h) for all a, b ∈ G1 and all g, h ∈ G2. If we apply the
function ψ to both sides of the first equation we have

ψ(φ(a ∗ b)) = ψ(φ(a)� φ(b))

and by the second equation, the right side can be re-written as follows.

ψ(φ(a ∗ b)) = ψ(φ(a)) ? ψ(φ(b))

And rewriting with function composition notation,

ψ ◦ φ(a ∗ b) = ψ ◦ φ(a) ? ψ ◦ φ(b).

This fulfills Definition 5.79 and therefore the composite function ψ ◦ φ is an
isomorphism from G1 to G3.

Theorem 5.88

Let G be any nonempty collection of groups. Then the relation ∼= of being
isomorphic is an equivalence relation.

Proof. A binary relation is an equivalence relation if and only if it is reflexive
(a = a), symmetric (if a = b then b = a) and transitive (if a = b and b = c then
a = c).

The relation of being isomorphic is reflexive because
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